
Caythorpe Primary School Working Scientifically Progression

Source: Primary Science Teaching Trust

skills stage	EYFS	KS1	Lower KS2	Upper KS2
PLAN	choose the resources they need for their chosen activities and say when they do or don't need help	ask simple questions and recognising that they can be answered in different ways	 ask relevant questions and using different types of scientific enquiries to answer them set up simple practical enquiries, comparative and fair tests 	plan different types o scientific enquiries to answer questions, including recognising and controlling variables where necessary
DO	 know about similarities and differences in relation to places, objects, materials and living things make observations of animals and plants explore a variety of materials, tools and techniques, experimenting with colour, design, texture, form and function. select and use technology for particular purposes 	 observe closely, using simple equipment perform simple tests identify and classify 	make systematic and careful observations and, where appropriate, take accurate measurements using standard units, use a range of equipment, including thermometers and data loggers	take measurements, using a range of scientific equipment, with increasing accuracy and precision, taking repeat readings when appropriate
RECORD	represent their own ideas, thoughts and feelings through design and technology, art, music, dance, role play and stories	gather and record data to help in answering questions.	 gather, record, classify and present data in a variety of ways to help in answering questions record findings using simple scientific language, drawings, labelled diagrams, keys, bar charts, and tables 	record data and results of increasing complexity using scientific diagrams an labels, classification keys, tables, scatter graphs, bar and line graphs
REVIEW	 ➤ talk about the features of their own immediate environment and how environments might vary from one another ➤ explain why some things occur and talk about changes 	➤ use their observations and ideas to suggest answers to questions	 report on findings from enquiries, including oral and written explanations, displays or presentations of results and conclusions use results to draw simple conclusions, make predictions for new values, suggest improvements and raise further questions identify differences, similarities or changes related to simple scientific ideas and processes use straightforward scientific evidence to answer questions or to 	➤ use test results to make predictions to set up further comparative and fair tests ➤ report and present findings from enquiries, including conclusions, causal relationships and explanations of and degree of trust in results, in oral and written forms such as displays and other presentations ➤ identify scientific evidence that has been used to support or refute ideas or

CAYTHORA

CAYTHORA

	EYFS→ KS1 → Secure			LKS2 — Secure		UKS2		
	Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 6+
Patterns	I recognise, create & describe simple patterns (e.g. size)	I recognise, create å describe simple number patterns	I describe simple features & patterns in data & charts	I describe simple patterns in data, charts & graphs	I describe simple patterns, trends & relationships in data	I describe patterns, trends & relationships in data	I describe changing patterns, trends & relationships	I compare changing patterns, trends & relationships
	I begin to use 'more or less', etc to compare observation	I use 'more or less' to compare numbers	I see obvious differences in sets of numbers	I see subtle differences in sets of numbers	I see differences (error) in repeated data	I spot anomalous data that doesn't fit the pattern	I spot anomalous data & explain from the method	I deal with anomalous data to increase reliability
Conclusions	I talk about changes that I observe during activities	I describe the changes that are happening	I describe the changes that have happened	I describe my results by linking cause å effect	I describe trends & begin to use science to explain	I use data in my conclusions & use science to explain	I use 1º/2º data å science ideas in my conclusions	I use a range of data in conclusions & models to explain
	I explore 'what if' questions through play	I explore different ways to do things through play	I suggest a different way to do things with help	I suggest improvements to my method	I suggest sensible improvements to my method	I identify strengths & weaknesses & improvements	I suggest limitations (data) & practical improvements	I suggest limitations (use data) & justify improvements

	SCH				
e so they do not in	fluence				
ation of the data away hen the controlled					
changing another. hip in a fair test	This is				
ory, experience or o	direct				
ged in a fair test.					
echnique & equip	ment				
ns from an investig	gation				
r). Can be improve mean	ed				
e columns to show f a variable	,				
to improved safety	′				
can also be data g	gathered				
to show the trend	l (does				
are measuring wh	at is				

KS1

Axis = reference line drawn on a graph to show the range of data for each variable (shows values)

Block chart = visual toll to show data/counts as bars built up by adding component blocks. Used to compare data visually.

Cause = the variable we chose to change in an investigation Data = a measured or counted outcome for a variable (numbers)

Effect = the variable that changes when we change the cause

Experiment = investigation that looks for a link between variables (fair or comparative test)

Observation = sensed outcome for a variable (described in words)

Pictogram = chart that uses pictures to represent data

Prediction = suggests what might happen based upon prior knowledge or experience (not a guess)

Results table = way of presenting data from an investigation Risk = dangers when doing an investigation, using equipment or working in an area

Standard units = a quantity of a variable that is used as a standard measure (e.g. litre, meter, gram, etc)

Variable = a factor that can change

LKS2

Bar chart/graph = visual tool that uses bars to compare discrete data

Comparative test = fair test, where only one variable is changed to observe the effect on another.

Conclusion = the answer you give to a question (based upon data)

Continuous data = values are numbers (result from counting/measuring)

Coordinate = used to plot data (x/y) on a graph

Data interval =numerical gap between data points for a variable

Data point = a coordinate for a variable

Data range = maximum & minimum values for a variable

Discrete data = values are distinct/separate (e.g. male/female; counts)

Fair test = an investigation where only one variable is changed (cause); all others are kept the same and at their best value

Line graph = visual tool that shows a relationship trend between two continuous variables (it is essentially a scatter graph)

Method = ordered sequence of steps taken during an investigation. It can be written or in diagram form

Prediction (correlation/relationship) = describes the expected trend for two variables (cause & effect) that are linked

Prediction (scientific/causal) = suggestion as to what might happen based upon prior knowledge, experience or observation. Links the cause with the predicted effect. Does not have to describe the trend

Trend = the outcome when two variables (cause & effect) are linked

UKS2

Anomalous data = data that does not fit a pattern

Controlled variable = variables kept at the same value so they do not influence the dependent variable in a fair test

Data set = vales for repeated data Data spread = variation of the data away from a mean (often due to imprecise measuring or when the controlled variable have not been kept the same)

Dependent variable = changed (effect) as a result of changing another. This is observed or measured and demonstrates a relationship in a fair test

Hypothesis = a reasoned prediction based upon theory, experience or direc observation

Independent variable = chosen variable (cause) changed in a fair tes

Mean = 'average' value from a data set

Precision = how similar your repeated data is (good technique & equipment choice)

Primary data = your experimental data or observations from an investigation

Reliability = if your data can be repeated (i.e. no error). Can be improved through collecting repeated values and calculating a mean

Results table (complex) = Table that contains multiple columns to show repeated data, calculations or a variety of features of a variable

Risk assessment = formal assessment of risk leading to improved safety recommendations or change in practice

Secondary data = researched data or observations. It can also be data gathered from others doing a similar experiment. Used to compare/support

Trend line = line drawn roughly between coordinates to show the trend (does not have to go through all data points)

Valid data = reliable, accurate & no bias or error (we are measuring what is expected)

Comparative / fair testing

Changing one variable to see its effect on another, whilst keeping all others the same.

Research

Using secondary sources of information to answer scientific questions.

Observation over time

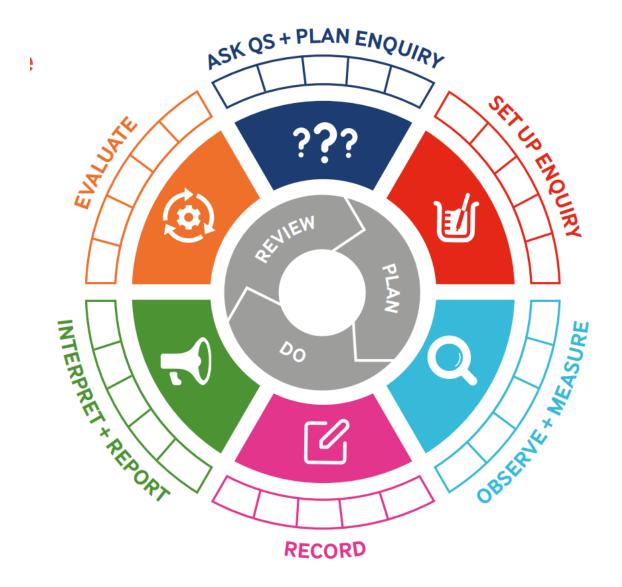
Observing changes that occur over a period of time ranging from minutes to months.

Pattern-seeking

Identifying patterns and looking for relationships in enquiries where variables are difficult to control.

Identifying, grouping and classifying

Making observations to name, sort and organise items.



Problem-solving

Applying prior scientific knowledge to find answers to problems.

